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(or IC3)

1 Incremental Construction of

2 Inductive Clauses for

3 Indubitable Correctness
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Symbolic Transition System

Described by a set of logic formulas:

1 Initial condition (usually a single state) 𝐼

2 State variables 𝑥𝑛

3 Transitions 𝑇 (𝑥, 𝑥′)
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A Simple Symbolic Transition System

State variables 𝑥0, 𝑥1

State (conjunction of state variables) 𝑥0 = 𝐴, 𝑥1 = 𝐵

Initial state 𝑥0 = 10, 𝑥1 = 12

Transitions 𝑇0 ∶ 𝑥′
0 ∶= 𝑥0 + 1 and 𝑇1 ∶ 𝑥′

1 ∶= 𝑥1 × 3

Utah State University Landon Taylor PDR Overview 4



Literals

Literals describe a boolean variable or its negation.

𝑥0 = 4

𝑥1 < 3

¬(𝑥1 = 100)
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Formulae

A formula 𝐹(𝑠) is a conjunction of literals.

For example: 𝐹(𝑠) = (𝑥0 = 4) ∧ (𝑥1 < 3) ∧ ¬(𝑥1 = 100)

An assignment 𝑠 to at least all variables in 𝐹(𝑠) either:

satisfies the formula (causes 𝐹 = true), notated as 𝑠 ⊧ 𝐹(𝑠)

does not satisfy the formula, notated as 𝑠 ̸⊧ 𝐹.
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Reachability

We often want to find out if a formula 𝐹 (i.e. a target state)

can be satisfied by any state in the model (satisfiability)

can be reached from any state not satisfying 𝐹 (inductive invariance)

can be reached from a given state, usually 𝐼 (reachability)

The focus of PDR is reachability analysis.
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Inductive Reachability

If from 𝐼 we can reach a state reaching a state reaching a state reaching a
state reaching 𝑆 ⊧ 𝐹, then we can reach 𝑆 ⊧ 𝐹 from 𝐼.

FI

FI
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Goal of PDR

Assuming 𝐹(𝑠) is not already an inductive invariant,
Find an inductive invariant P(𝑠) stronger than 𝐹(𝑠), such that

𝐼 ⊧ G(𝑠)

G(𝑠) ∧ 𝑇 (𝑠, 𝑠′) ⊧ G(𝑠′)

G(𝑠) ⊧ 𝐹(𝑠)
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The following slides are borrowed from “Interpolation in SMT and in
Verification”, presented by Alberto Griggio at VTSA Summer School in 2015.
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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
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T T T
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:Ps
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A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found
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A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2
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A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 
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Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 

 Consider now the relative induction check

 We know that                        because              (base case)

 Since                   , then we know that       holds up to k
 

 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 

if                    then the fixpoint is an inductive invariant 

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1



  

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



Access this presentation and a bibliography at:

landonjtaylor.net/pdr
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