

Landon Taylor

College of Engineering UtahStateUniversity

- 1 Incremental Construction of
- 2 Inductive Clauses for
- **3** Indubitable **C**orrectness

Symbolic Transition System

Described by a set of logic formulas:

- **1** Initial condition (usually a single state) *I*
- **2** State variables x_n
- **3** Transitions T(x, x')

A Simple Symbolic Transition System

- $\blacksquare \ {\rm State \ variables} \ x_0, x_1$
- State (conjunction of state variables) $x_0 = A, x_1 = B$

Initial state
$$x_0 = 10, x_1 = 12$$

 \blacksquare Transitions $T_0: x_0':=x_0+1$ and $T_1: x_1':=x_1\times 3$

Literals

Literals describe a boolean variable or its negation.

•
$$x_0 = 4$$

• $x_1 < 3$

$$\blacksquare \ \neg(x_1=100)$$

Formulae

A formula F(s) is a conjunction of literals.

For example: $F(s) = (x_0 = 4) \land (x_1 < 3) \land \neg (x_1 = 100)$

An assignment s to at least all variables in F(s) either:

- **s**atisfies the formula (causes F = true), notated as $s \models F(s)$
- does not satisfy the formula, notated as $s \notin F$.

Reachability

We often want to find out if a formula *F* (i.e. a *target state*)

- can be satisfied by any state in the model (satisfiability)
- can be reached from any state not satisfying *F* (inductive invariance)
- can be reached from a given state, usually *I* (reachability)

The focus of PDR is reachability analysis.

Inductive Reachability

If from *I* we can reach a state reaching a state reaching a state reaching a state reaching $S \models F$, then we can reach $S \models F$ from *I*.

Goal of PDR

Assuming F(s) is not already an inductive invariant, Find an inductive invariant P(s) stronger than F(s), such that

$$\blacksquare I \models \mathbf{G}(s)$$

$$\blacksquare \ \mathbf{G}(s) \wedge T(s,s') \models \mathbf{G}(s')$$

 $\blacksquare \ \mathbf{G}(s) \models F(s)$

The following slides are borrowed from "Interpolation in SMT and in Verification", presented by Alberto Griggio at VTSA Summer School in 2015.

- Given a symbolic transition system and invariant property P, build an inductive invariant F s.t. $F \models P$
- Trace of formulae $F_0(X) \equiv I, \ldots, F_k(X)$ s.t:
 - for i > 0, F_i is a set of clauses overapproximation of states reachable in up to i steps $F_{i+1} \subseteq F_i$ (so $F_i \models F_{i+1}$) $F_i \land T \models F'_{i+1}$ for all $i < k, F_i \models P$

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-1} \land \neg s \land T \land s'$ (i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s

Call SAT solver on
$$F_{k-1} \land \neg s \land T \land s'$$
 (i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)

Check if s is inductive relative to F_{k-1}

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s

Call SAT solver on
$$F_{k-1} \land \neg s \land T \land s'$$

(i.e., check if $F_{k-1} \land \neg s \land T \models \neg s'$)

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-1} \wedge \neg s \wedge T \wedge s'$
 - **SAT:** *s* is reachable from $F_{k-1} \land \neg s$ in 1 step
 - Get a cube *c* in the preimage of *s* and try (recursively) to prove it unreachable from F_{k-2} , ...
 - c is a counterexample to induction (CTI)

If *I* is reached, counterexample found

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - \blacksquare Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s'$

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s'$
 - UNSAT: $\neg c$ is inductive relative to F_{k-2} $|F_{k-2} \land \neg c \land T \models \neg c'|$
 - Generalize *c* to *g* and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_1$

- Blocking phase: incrementally strengthen trace until $F_k \models P$
 - Get bad cube s
 - Call SAT solver on $F_{k-2} \wedge \neg s \wedge T \wedge s'$
 - UNSAT: $\neg c$ is inductive relative to F_{k-2} $F_{k-2} \land \neg c \land T \models \neg c'$
 - Generalize c to g and block by adding $\neg g$ to $F_{k-1}, F_{k-2}, \ldots, F_1$

Propagation: extend trace to F_{k+1} and push forward clauses For each *i* and each clause $c \in F_i$: Call SAT solver on $F_i \wedge T \wedge \neg c'$ If UNSAT, add *c* to F_{i+1} $F_i \wedge T \models c'$

Propagation: extend trace to F_{k+1} and push forward clauses For each *i* and each clause $c \in F_i$: Call SAT solver on $F_i \wedge T \wedge \neg c'$ If UNSAT, add *c* to F_{i+1} $F_i \wedge T \models c'$

Propagation: extend trace to F_{k+1} and push forward clausesFor each i and each clause $c \in F_i$:Call SAT solver on $F_i \wedge T \wedge \neg c'$ If UNSAT, add c to F_{i+1}

If $F_i \equiv F_{i+1}$, *P* is proved, otherwise start another round of blocking and propagation

IC3 pseudo-code


```
bool IC3(I, T, P):
    trace = [I] # first elem of trace is init formula
    trace.push() # add a new frame
   while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found
        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]:
                return True # property proved
```

IC3 pseudo-code


```
bool rec_block(s, i):
    if i == 0:
        return False # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True
```

Correctness (sketch)

- \blacksquare Consider the formula $\ F_{k-1} \wedge T \wedge s'$ where s is a bad cube
 - If UNSAT, then F_{k-1} is strong enough to block s
 - Since $F_i \wedge T \models F'_{i+1}$, then s is unreachable in k steps or less
 - \blacksquare Since $F_i \models F_{i+1},$ then we can add s to all $F_j, j \leq k$

- \blacksquare Consider the formula $\ F_{k-1} \wedge T \wedge s'$ where s is a bad cube
 - If UNSAT, then F_{k-1} is strong enough to block s
 - Since $F_i \wedge T \models F'_{i+1}$, then s is unreachable in k steps or less
 - \blacksquare Since $F_i \models F_{i+1}$, then we can add s to all $F_j, j \leq k$
- Consider now the relative induction check $F_{k-1} \wedge \neg s \wedge T \wedge s'$
 - We know that $I \equiv F_0 \not\models s$ because $I \models P$ (base case)
 - Since $F_i \models F_{i+1}$, then we know that $\neg s$ holds up to k

- \blacksquare Consider the formula $\ F_{k-1} \wedge T \wedge s'$ where s is a bad cube
 - If UNSAT, then F_{k-1} is strong enough to block s
 - Since $F_i \wedge T \models F'_{i+1}$, then s is unreachable in k steps or less
 - \blacksquare Since $F_i \models F_{i+1}$, then we can add s to all $F_j, j \leq k$
- Consider now the relative induction check $F_{k-1} \wedge \neg s \wedge T \wedge s'$
 - We know that $I \equiv F_0 \not\models s$ because $I \models P$ (base case)
 - Since $F_i \models F_{i+1}$, then we know that $\neg s$ holds up to k
- **Propagation:** for each $c \in F_i$, check $F_i \wedge T \wedge \neg c'$
 - we know that c holds up to i, if UNSAT then it holds up to i+1
 - since $F_i \models F_{i+1}$, $F_i \wedge T \models F'_{i+1}$ and $F_i \models P$,
 - if $F_i \equiv F_{i+1}$ then the fixpoint is an inductive invariant

Inductive Clause Generalization

Crucial step of IC3

Given a relatively inductive clause $c \stackrel{\text{def}}{=} \{l_1, \ldots, l_n\}$ compute a generalization $g \subseteq c$ that is still inductive

$$F_{i-1} \wedge T \wedge g \models g' \tag{1}$$

- \blacksquare Drop literals from c and check that (1) still holds
 - Accelerate with unsat cores returned by the SAT solver
 - Using SAT under assumptions
- However, make sure the base case still holds
 - lacksquare If $I
 ot\models c\setminus\{l_j\}$, then l_j cannot be dropped

Simple iterative generalization


```
void indgen(c, i):
    done = False
    for iter = 1 to max iters:
        if done:
            break
        done = True
        for each 1 in c:
            cand = c \setminus \{1\}
             if not is_sat(I & cand) and
                not is_sat(trace[i] & ~cand & T & cand'):
                 c = get_unsat_core(cand)
                 rest = cand \setminus c
                 while is_sat(I & c):
                    l1 = rest.pop()
                    c.add(l1)
                 done = False
                 break
```

CTI computation

- When $F_i \wedge \neg s \wedge T \wedge s'$ is satisfiable:
 - *s* reaches $\neg P$ in *k*-*i* steps
 - s can be reached from F_i in 1 step

- strengthen F_i by blocking cubes c in the preimage of s
- Extract CTI *c* from the SAT assignment
 - And generalize to represent multiple bad predecessors
 - Use unsat cores, exploiting a functional encoding of the transition relation
 - If T is functional, then $c \wedge \operatorname{inputs} \wedge T \models s'$
 - \blacksquare check $\operatorname{inputs} \wedge T \wedge \neg s'$ under assumptions c

SAT-based CTI generalization


```
void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c
```

Access this presentation and a bibliography at:

landonjtaylor.net/pdr