
PDR
Property-Directed Reachability

Landon Taylor

Utah State University Landon Taylor PDR Overview 1

(or IC3)

1 Incremental Construction of

2 Inductive Clauses for

3 Indubitable Correctness

Utah State University Landon Taylor PDR Overview 2

Symbolic Transition System

Described by a set of logic formulas:

1 Initial condition (usually a single state) 𝐼

2 State variables 𝑥𝑛

3 Transitions 𝑇 (𝑥, 𝑥′)

Utah State University Landon Taylor PDR Overview 3

A Simple Symbolic Transition System

State variables 𝑥0, 𝑥1

State (conjunction of state variables) 𝑥0 = 𝐴, 𝑥1 = 𝐵

Initial state 𝑥0 = 10, 𝑥1 = 12

Transitions 𝑇0 ∶ 𝑥′
0 ∶= 𝑥0 + 1 and 𝑇1 ∶ 𝑥′

1 ∶= 𝑥1 × 3

Utah State University Landon Taylor PDR Overview 4

Literals

Literals describe a boolean variable or its negation.

𝑥0 = 4

𝑥1 < 3

¬(𝑥1 = 100)

Utah State University Landon Taylor PDR Overview 5

Formulae

A formula 𝐹(𝑠) is a conjunction of literals.

For example: 𝐹(𝑠) = (𝑥0 = 4) ∧ (𝑥1 < 3) ∧ ¬(𝑥1 = 100)

An assignment 𝑠 to at least all variables in 𝐹(𝑠) either:

satisfies the formula (causes 𝐹 = true), notated as 𝑠 ⊧ 𝐹(𝑠)

does not satisfy the formula, notated as 𝑠 ̸⊧ 𝐹.

Utah State University Landon Taylor PDR Overview 6

Reachability

We often want to find out if a formula 𝐹 (i.e. a target state)

can be satisfied by any state in the model (satisfiability)

can be reached from any state not satisfying 𝐹 (inductive invariance)

can be reached from a given state, usually 𝐼 (reachability)

The focus of PDR is reachability analysis.

Utah State University Landon Taylor PDR Overview 7

Inductive Reachability

If from 𝐼 we can reach a state reaching a state reaching a state reaching a
state reaching 𝑆 ⊧ 𝐹, then we can reach 𝑆 ⊧ 𝐹 from 𝐼.

FI

FI

Utah State University Landon Taylor PDR Overview 8

Goal of PDR

Assuming 𝐹(𝑠) is not already an inductive invariant,
Find an inductive invariant P(𝑠) stronger than 𝐹(𝑠), such that

𝐼 ⊧ G(𝑠)

G(𝑠) ∧ 𝑇 (𝑠, 𝑠′) ⊧ G(𝑠′)

G(𝑠) ⊧ 𝐹(𝑠)

Utah State University Landon Taylor PDR Overview 9

The following slides are borrowed from “Interpolation in SMT and in
Verification”, presented by Alberto Griggio at VTSA Summer School in 2015.

Utah State University Landon Taylor PDR Overview 10

A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

Check if s is inductive relative to F
k-1

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on
 (i.e., check if)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0
Fk¡1 ^ :s ^ T j= :s0

FkI
TT s

Fk¡2T Fk¡1

:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 SAT: s is reachable from in 1 step
 Get a cube c in the preimage of s and try

(recursively) to prove it unreachable from , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

FkFk¡1I Fk¡2T
cc

TT
:Ps

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s

 Call SAT solver on

 UNSAT: is inductive relative to
 Generalize c to g and block by adding to

Fk j= P

Fk¡2
Fk¡1; Fk¡2; : : : ; F1:g

:c

FkFk¡1I
sT T

Fk¡2Fk¡2
T Fk¡1

:Ps

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT

Fk+1

Fi+1

c 2 Fi

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

A (very) high level view of IC3

Propagation: extend trace to and push forward clauses

For each i and each clause :

Call SAT solver on

If UNSAT, add c to

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1

IC3 pseudo-code

bool IC3(I, T, P):
 trace = [I] # first elem of trace is init formula
 trace.push() # add a new frame
 while True:
 # blocking phase
 while is_sat(trace.last() & ~P):
 c = extract_cube() # c |= trace.last() & ~P
 if not rec_block(c, trace.size()-1):
 return False # counterexample found

 # propagation phase
 trace.push()
 for i=1 to trace.size()-1:
 for each cube c in trace[i]:
 if not is_sat(trace[i] & ~c & T & c'):
 trace[i+1].append(c)
 if trace[i] == trace[i+1]:
 return True # property proved

IC3 pseudo-code

bool rec_block(s, i):
 if i == 0:
 return False # reached initial states
 while is_sat(trace[i-1] & ~s & T & s'):
 c = get_predecessor(i-1, T, s')
 if not rec_block(c, i-1):
 return False
 g = generalize(~s, i)
 trace[i].append(g)
 return True

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

Fi ^ T j= F 0i+1

Correctness (sketch)

 Consider the formula where s is a bad cube

 If UNSAT, then is strong enough to block s

 Since , then s is unreachable in k steps or less

 Since , then we can add s to all

 Consider now the relative induction check

 We know that because (base case)

 Since , then we know that holds up to k

 Propagation: for each , check

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since , and ,

if then the fixpoint is an inductive invariant

Fi ^ T j= F 0i+1

Fi ^ T j= F 0i+1

Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause

compute a generalization that is still inductive

 Drop literals from and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If , then cannot be dropped

Simple iterative generalization

void indgen(c, i):
 done = False
 for iter = 1 to max_iters:
 if done:
 break
 done = True
 for each l in c:
 cand = c \ {l}
 if not is_sat(I & cand) and
 not is_sat(trace[i] & ~cand & T & cand'):
 c = get_unsat_core(cand)
 rest = cand \ c
 while is_sat(I & c):
 l1 = rest.pop()
 c.add(l1)
 done = False
 break

 When is satisfiable:

 s reaches in k-i steps

 s can be reached from in 1 step

 strengthen by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition
relation

 If is functional, then
 check under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
 for i = 1 to max_iters:
 b = is_sat(cti & inputs & T & ~next')
 assert not b # assume T to be functional
 c = get_unsat_core(cti)
 if should_stop(c, cti):
 break
 cti = c

Access this presentation and a bibliography at:

landonjtaylor.net/pdr

Utah State University Landon Taylor PDR Overview 11

