PDR

Property-Directed Reachability

Landon Taylor

TE College OI E"glllee""g

[@) UtahStateUniversity

Utah State University Landon Taylor PDR Overview

El Incremental Construction of
A Inductive Clauses for

H Indubitable Correctness

Utah State University Landon Taylor PDR Overview

Symbolic Transition System

Described by a set of logic formulas:
E Initial condition (usually a single state) I
A State variables z,,

HE Transitions T'(x, z")

Utah State University Landon Taylor PDR Overview

A Simple Symbolic Transition System

m State variables z, =,
m State (conjunction of state variables) z, = A, z; = B
m Initial state z, = 10,2z, = 12

/

m Transitions T, : z; := 2, +1land T} : 2] :=x; X 3

Utah State University Landon Taylor PDR Overview

Literals describe a boolean variable or its negation.
W, =4
mz <3
m —(z; = 100)

Utah State University Landon Taylor PDR Overview

Formulae

A formula F'(s) is a conjunction of literals.

For example: F(s) = (zy = 4) A (z1 < 3) A =(x; = 100)

An assignment s to at least all variables in F'(s) either:
m satisfies the formula (causes F' = true), notated as s kF F(s)

m does not satisfy the formula, notated as s ¥ F.

Utah State University Landon Taylor PDR Overview

Reachability

We often want to find out if a formula F'(i.e. a target state)
m can be satisfied by any state in the model (satisfiability)
m can be reached from any state not satisfying F'(inductive invariance)

m can be reached from a given state, usually I (reachability)

The focus of PDR is reachability analysis.

Utah State University Landon Taylor PDR Overview

Inductive Reachability

If from I we can reach a state reaching a state reaching a state reaching a
state reaching S F F, then we can reach S F F'from 1.

-
A

Utah State University Landon Taylor PDR Overview

Goal of PDR

Assuming F'(s) is not already an inductive invariant,
Find an inductive invariant P(s) stronger than F(s), such that

m/FG(s)
B G(s)ANT(s,8) EG(s)
m G(s)F F(s)

Utah State University Landon Taylor PDR Overview

The following slides are borrowed from “Interpolation in SMT and in
Verification”, presented by Alberto Griggio at VTSA Summer School in 2015.

Utah State University Landon Taylor PDR Overview

A (very) high level view of IC3 =X

aﬂ T

® Given a symbolic transition system and invariant property P,
build an inductive invariant Fs.t. F' = P

® Trace of formulae Fp(X) =1,..., F(X) s.t:

m fori> 0, F, is a set of clauses
overapproximation of states reachable in up to i steps
Fit1 C F; (so F; = Fia)
ENT = i/+1
foralli < k,F; = P

A (very) high level view of IC3 =X

GH T

® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s

® Call SAT solveron Fy,_1 A—=sAT A s’
(i.e., checkif F,_1 A—=s AT | —s')

A (very) high level view of IC3 =X

GH T

® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s

m Call SAT solveron Fj,_1 A—=s AT A s’
(i.e., check if [Fk_l A-sAT = ﬂs')J

,/

Check if s is inductive relative to F,_,

A (very) high level view of IC3 =X

O ol —-

® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s

® Call SAT solveron Fy,_1 A—=sAT A s’
(i.e., checkif F,_1 A—=s AT | —s')

A (very) high level view of IC3

=<

Q Fkl T

® Blocking phase: incrementally strengthen trace until Fy, |= P

B Get bad cube s
® Call SAT solveron Fy,_1 A—=sAT A s’

® SAT: s is reachable from Fj_1 A —sin 1 step
B Get a cube ¢ in the preimage of s and try

(recursively) to prove it unreachable from FJ,_o, ...

B ¢ s a counterexample to induction (CTI)

If I is reached,
counterexample
found

A (very) high level view of IC3 =X

@ Frg T

® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s
® Call SAT solveron Fj,_o A—s AT A s

A (very) high level view of IC3 =X

® Blocking phase: incrementally strengthen trace until Fy, |= P
® Get bad cube s
m Call SAT solveron Fj,_o A—s AT A s
B UNSAT: —c is inductive relative to Fj,_o ‘Fk_g AN=cAT |E = ‘
® Generalize ¢ to g and block by adding —g to Fj_1, Fr_2,..., F1

A (very) high level view of IC3 =X

O E [

® Blocking phase: incrementally strengthen trace until Fy, |= P
® Get bad cube s
® Call SAT solveron Fj,_o A—s AT A s
B UNSAT: —c is inductive relative to Fj,_o ‘Fk_z AN=cAT |E = ‘
® Generalize ¢ to g and block by adding —g to Fj_1, Fr_2,..., F1

A (very) high level view of IC3 =X

o - I

Propagation: extend trace to F},, ;and push forward clauses
For each i and each clause c € Fj:

Call SAT solver on F; AT A —¢/
If UNSAT, add cto F;1;

Fi/\TIZC/

A (very) high level view of IC3 =X

= X

Propagation: extend trace to F},, ;and push forward clauses
For each i and each clause c € Fj:

Call SAT solveron F; AT A —¢/
If UNSAT, add cto F;1;

Fi/\TIZC/

A (very) high level view of IC3 =X

o i B

Propagation: extend trace to F},, ;and push forward clauses
For each i and each clause c € Fj:

Call SAT solver on F; AT A —¢/
If UNSAT, add cto F;1;

Fi/\TIZC/

If , P is proved,

otherwise start another round of blocking and propagation

IC3 pseudo-code

bool IC3(I, T, P):
trace = [I] # first elem of trace is init formula
trace.push() # add a new frame
while True:
blocking phase
while is_sat(trace.last() & ~P):
c = extract_cube() # ¢ |= trace.last() & ~P
if not rec_block(c, trace.size()-1):
return False # counterexample found

propagation phase
trace.push()
for i=1 to trace.size()-1:
for each cube c in trace[i]:
if not is_sat(trace[i] & ~c & T & c'):
trace[i+1].append(c)
if trace[i] == trace[i+1]:
return True # property proved

IC3 pseudo-code

;:(

bool rec_block(s, 1i):
if i ==
return False # reached initial states
while is_sat(trace[i-1] & ~s & T & s'):
c = get_predecessor(i-1, T, s')
if not rec_block(c, i-1):
return False
g = generalize(~s, 1)
trace[i].append(g)
return True

Correctness (sketch) f3<

m Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then F}_1 is strong enough to block s
® Since F; AT): Fz‘/+1’ then s is unreachable in k steps or less
" Since F; = F;,1,thenwecanadd stoall Fj,5 <k

Correctness (sketch) =K

m Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then F}_1 is strong enough to block s
® Since F; AT): Fz‘/+1’ then s is unreachable in k steps or less
" Since F; = F;,1,thenwecanadd stoall Fj,5 <k

® Consider now the relative induction check Fp,_; A—s AT A s

® We know that [= F, |~ s because I = P (base case)
= Since F; = F;.1, then we know that —s holds up to k

Correctness (sketch) =K

m Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then F}_1 is strong enough to block s
® Since F; AT): Fz‘/+1’ then s is unreachable in k steps or less
" Since F; = F;,1,thenwecanadd stoall Fj,5 <k

® Consider now the relative induction check Fp,_; A—s AT A s

® We know that [= F, |~ s because I = P (base case)
= Since F; = F;.1, then we know that —s holds up to k

® Propagation: for each ¢ € F;, check F; AT A =c
= we know that c holds up to i, if UNSAT then it holds up to i+1
= since F; = Fiy1, F; AT = F/,, and F; = P,
if ; = Fj1 then the fixpoint is an inductive invariant

. . =<
Inductive Clause Generalization .

® Crucial step of IC3
= Given a relatively inductive clause ¢ <= {I,...,l,}

compute a generalization g C c that is still inductive
FiiNTAgEYJ (1)

® Drop literals from ¢ and check that (1) still holds

= Accelerate with unsat cores returned by the SAT solver
® Using SAT under assumptions

B However, make sure the base case still holds
= If I B~ c\{l;},then [; cannot be dropped

Simple iterative generalization

;:(

void indgen(c, 1i):
done = False
for iter = 1 to max_iters:
if done:
break
done = True
for each 1 in c:
cand = ¢ \ {1}
if not is_sat(I & cand) and
not is_sat(trace[i] & ~cand & T & cand'):
c = get_unsat_core(cand)
rest = cand \ c
while is_sat(I & c):
11 = rest.pop()
c.add(11)
done = False
break

CTI computation

® When F; A —s AT A s is satisfiable: I ?
K3
® s reaches — P in k-i steps ¢

® 5 can be reached from F; in 1 step
® strengthen F; by blocking cubes c in the preimage of s

® Extract CTl ¢ from the SAT assignment
® And generalize to represent multiple bad predecessors

® Use unsat cores, exploiting a functional encoding of the transition
relation

® |f T is functional, then ¢ A inputs AT |= ¢’
® check inputs A T A —s’ under assumptions ¢

SAT-based CTI generalization

=

void generalize_cti(cti, inputs, next):
for 1 = 1 to max_iters:
b = is_sat(cti & inputs & T & ~next')
assert not b # assume T to be functional
c = get_unsat_core(cti)
if should_stop(c, cti):
break
cti = c

Access this presentation and a bibliography at:

landonjtaylor.net/pdr

Utah State University Landon Taylor PDR Overview

