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(or IC3)

1 Incremental Construction of

2 Inductive Clauses for

3 Indubitable Correctness
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Symbolic Transition System

Described by a set of logic formulas:

1 Initial condition (usually a single state) 𝐼

2 State variables 𝑥𝑛

3 Transitions 𝑇 (𝑥, 𝑥′)
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A Simple Symbolic Transition System

State variables 𝑥0, 𝑥1

State (conjunction of state variables) 𝑥0 = 𝐴, 𝑥1 = 𝐵

Initial state 𝑥0 = 10, 𝑥1 = 12

Transitions 𝑇0 ∶ 𝑥′
0 ∶= 𝑥0 + 1 and 𝑇1 ∶ 𝑥′

1 ∶= 𝑥1 × 3

Utah State University Landon Taylor PDR Overview 4



Literals

Literals describe a boolean variable or its negation.

𝑥0 = 4

𝑥1 < 3

¬(𝑥1 = 100)
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Formulae

A formula 𝐹(𝑠) is a conjunction of literals.

For example: 𝐹(𝑠) = (𝑥0 = 4) ∧ (𝑥1 < 3) ∧ ¬(𝑥1 = 100)

An assignment 𝑠 to at least all variables in 𝐹(𝑠) either:

satisfies the formula (causes 𝐹 = true), notated as 𝑠 ⊧ 𝐹(𝑠)

does not satisfy the formula, notated as 𝑠 ̸⊧ 𝐹.
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Reachability

We often want to find out if a formula 𝐹 (i.e. a target state)

can be satisfied by any state in the model (satisfiability)

can be reached from any state not satisfying 𝐹 (inductive invariance)

can be reached from a given state, usually 𝐼 (reachability)

The focus of PDR is reachability analysis.
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Inductive Reachability

If from 𝐼 we can reach a state reaching a state reaching a state reaching a
state reaching 𝑆 ⊧ 𝐹, then we can reach 𝑆 ⊧ 𝐹 from 𝐼.

FI

FI
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Goal of PDR

Assuming 𝐹(𝑠) is not already an inductive invariant,
Find an inductive invariant P(𝑠) stronger than 𝐹(𝑠), such that

𝐼 ⊧ G(𝑠)

G(𝑠) ∧ 𝑇 (𝑠, 𝑠′) ⊧ G(𝑠′)

G(𝑠) ⊧ 𝐹(𝑠)
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The following slides are borrowed from “Interpolation in SMT and in
Verification”, presented by Alberto Griggio at VTSA Summer School in 2015.
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A (very) high level view of IC3

 Given a symbolic transition system and invariant property P,
build an inductive invariant F s.t.

 Trace of formulae                                       s.t:

 for i > 0, F
i
 is a set of clauses

overapproximation of states reachable in up to i steps

Fi+1 µ Fi (so Fi j= Fi+1)
Fi ^ T j= F 0i+1
for all i < k; Fi j= P

:P
FkFk¡1I

T TT Fk¡2

F j= P
F0(X) ´ I; : : : ; Fk(X)



  

A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           
    (i.e., check if                                     )

:P
FkFk¡1I

T T T

Fk j= P

Fk¡2

:Ps

Fk¡1 ^ :s ^ T ^ s0
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A (very) high level view of IC3

 Blocking phase: incrementally strengthen trace until

 Get bad cube s 

 Call SAT solver on           

 SAT: s is reachable from                     in 1 step
 Get a cube c in the preimage of s and try 

(recursively) to prove it unreachable from           , …

 c is a counterexample to induction (CTI)

Fk j= P

Fk¡1 ^ :s ^ T ^ s0

FkFk¡1I
TT s

Fk¡2T
c

:Ps

Fk¡1 ^ :s

Fk¡2

If I is reached,
counterexample

found
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A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

FkFk¡1I Fk¡2

:P
FkFk¡2 Fk¡1

T TT
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A (very) high level view of IC3

Propagation: extend trace to         and push forward clauses

For each i and each clause             :

Call SAT solver on

If UNSAT, add c to 

Fk+1

Fi+1

c 2 Fi

FkFk¡1I Fi Fk¡2

:P
Fk¡2 Fk¡1

T TT Fk Fk+1
T

If                    , P is proved,
otherwise start another round of blocking and propagation
Fi ´ Fi+1



  

IC3 pseudo-code

bool IC3(I, T, P):
    trace = [I]   # first elem of trace is init formula
    trace.push()  # add a new frame
    while True:
        # blocking phase
        while is_sat(trace.last() & ~P):
            c = extract_cube() # c |= trace.last() & ~P
            if not rec_block(c, trace.size()-1):
                return False # counterexample found

        # propagation phase
        trace.push()
        for i=1 to trace.size()-1:
            for each cube c in trace[i]:
                if not is_sat(trace[i] & ~c & T & c'):
                    trace[i+1].append(c)
            if trace[i] == trace[i+1]: 
                return True # property proved



  

IC3 pseudo-code

bool rec_block(s, i):
    if i == 0:
        return False  # reached initial states
    while is_sat(trace[i-1] & ~s & T & s'):
        c = get_predecessor(i-1, T, s')
        if not rec_block(c, i-1):
            return False
    g = generalize(~s, i)
    trace[i].append(g)
    return True



  

Correctness (sketch)

 Consider the formula                          where s is a bad cube

 If UNSAT, then           is strong enough to block s

 Since                           , then s is unreachable in k steps or less 

 Since                    , then we can add s to all 
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 Propagation: for each            , check  

 we know that c holds up to i, if UNSAT then it holds up to i+1

 since                    ,                             and               , 
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Inductive Clause Generalization

 Crucial step of IC3

 Given a relatively inductive clause      

compute a generalization            that is still inductive

 Drop literals from    and check that (1) still holds

 Accelerate with unsat cores returned by the SAT solver

 Using SAT under assumptions

 However, make sure the base case still holds

 If                        , then     cannot be dropped



  

Simple iterative generalization

void indgen(c, i):
    done = False
    for iter = 1 to max_iters:
        if done:
            break
        done = True
        for each l in c:
            cand = c \ {l}
            if not is_sat(I & cand) and 
               not is_sat(trace[i] & ~cand & T & cand'):
                c = get_unsat_core(cand)
                rest = cand \ c
                while is_sat(I & c):
                   l1 = rest.pop()
                   c.add(l1)
                done = False
                break



  

 When                             is satisfiable:

 s reaches        in k-i steps

 s can be reached from      in 1 step

 strengthen      by blocking cubes c in the preimage of s

 Extract CTI c from the SAT assignment

 And generalize to represent multiple bad predecessors

 Use unsat cores, exploiting a functional encoding of the transition 
relation

 If       is functional, then
 check                                 under assumptions

:P cs
s'

T

:P

Fi
Fi

Fi

CTI computation



  

SAT-based CTI generalization

void generalize_cti(cti, inputs, next):
    for i = 1 to max_iters:
        b = is_sat(cti & inputs & T & ~next')
        assert not b # assume T to be functional
        c = get_unsat_core(cti)
        if should_stop(c, cti):
            break
        cti = c



Access this presentation and a bibliography at:

landonjtaylor.net/pdr
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