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Symbolic Transition System

Described by a set of logic formulas:
E Initial condition (usually a single state) I
A State variables z,,

HE Transitions T'(x, z")
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A Simple Symbolic Transition System

m State variables z, =,
m State (conjunction of state variables) z, = A, z; = B
m Initial state z, = 10,2z, = 12

/

m Transitions T, : z; := 2, +1land T} : 2] :=x; X 3
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Literals describe a boolean variable or its negation.
W, =4
mz <3
m —(z; = 100)
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Formulae

A formula F'(s) is a conjunction of literals.

For example: F(s) = (zy = 4) A (z1 < 3) A =(x; = 100)

An assignment s to at least all variables in F'(s) either:
m satisfies the formula (causes F' = true), notated as s kF F(s)

m does not satisfy the formula, notated as s ¥ F.
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Reachability

We often want to find out if a formula F'(i.e. a target state)
m can be satisfied by any state in the model (satisfiability)
m can be reached from any state not satisfying F'(inductive invariance)

m can be reached from a given state, usually I (reachability)

The focus of PDR is reachability analysis.
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Inductive Reachability

If from I we can reach a state reaching a state reaching a state reaching a
state reaching S F F, then we can reach S F F'from 1.

-
A
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Goal of PDR

Assuming F'(s) is not already an inductive invariant,
Find an inductive invariant P(s) stronger than F(s), such that

m/FG(s)
B G(s)ANT(s,8) EG(s)
m G(s)F F(s)
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The following slides are borrowed from “Interpolation in SMT and in
Verification”, presented by Alberto Griggio at VTSA Summer School in 2015.
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A (very) high level view of IC3 =X

aﬂ T

® Given a symbolic transition system and invariant property P,
build an inductive invariant Fs.t. F' = P

® Trace of formulae Fp(X) =1,..., F(X) s.t:

m fori> 0, F, is a set of clauses
overapproximation of states reachable in up to i steps
Fit1 C F; (so F; = Fia)
ENT = i/+1
foralli < k,F; = P



A (very) high level view of IC3 =X
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® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s

® Call SAT solveron Fy,_1 A—=sAT A s’
(i.e., checkif F,_1 A—=s AT | —s')
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® Blocking phase: incrementally strengthen trace until Fy, |= P
= Get bad cube s

m Call SAT solveron Fj,_1 A—=s AT A s’
(i.e., check if [Fk_l A-sAT = ﬂs')J

,/

Check if s is inductive relative to F,_,
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A (very) high level view of IC3
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® Blocking phase: incrementally strengthen trace until Fy, |= P

B Get bad cube s
® Call SAT solveron Fy,_1 A—=sAT A s’

® SAT: s is reachable from Fj_1 A —sin 1 step
B Get a cube ¢ in the preimage of s and try

(recursively) to prove it unreachable from FJ,_o, ...

B ¢ s a counterexample to induction (CTI)

If I is reached,
counterexample
found
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® Blocking phase: incrementally strengthen trace until Fy, |= P
® Get bad cube s
m Call SAT solveron Fj,_o A—s AT A s
B UNSAT: —c is inductive relative to Fj,_o ‘Fk_g AN=cAT |E = ‘
® Generalize ¢ to g and block by adding —g to Fj_1, Fr_2,..., F1
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® Blocking phase: incrementally strengthen trace until Fy, |= P
® Get bad cube s
® Call SAT solveron Fj,_o A—s AT A s
B UNSAT: —c is inductive relative to Fj,_o ‘Fk_z AN=cAT |E = ‘
® Generalize ¢ to g and block by adding —g to Fj_1, Fr_2,..., F1




A (very) high level view of IC3 =X
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Propagation: extend trace to F},, ;and push forward clauses
For each i and each clause c € Fj:

Call SAT solver on F; AT A —¢/
If UNSAT, add cto F;1;

Fi/\TIZC/
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A (very) high level view of IC3 =X
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Propagation: extend trace to F},, ;and push forward clauses
For each i and each clause c € Fj:

Call SAT solver on F; AT A —¢/
If UNSAT, add cto F;1;

Fi/\TIZC/

If , P is proved,

otherwise start another round of blocking and propagation



IC3 pseudo-code

bool IC3(I, T, P):
trace = [I] # first elem of trace is init formula
trace.push() # add a new frame
while True:
# blocking phase
while is_sat(trace.last() & ~P):
c = extract_cube() # ¢ |= trace.last() & ~P
if not rec_block(c, trace.size()-1):
return False # counterexample found

# propagation phase
trace.push()
for i=1 to trace.size()-1:
for each cube c in trace[i]:
if not is_sat(trace[i] & ~c & T & c'):
trace[i+1].append(c)
if trace[i] == trace[i+1]:
return True # property proved




IC3 pseudo-code

;:(

bool rec_block(s, 1i):
if i ==
return False # reached initial states
while is_sat(trace[i-1] & ~s & T & s'):
c = get_predecessor(i-1, T, s')
if not rec_block(c, i-1):
return False
g = generalize(~s, 1)
trace[i].append(g)
return True




Correctness (sketch) f3<

m Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then F}_1 is strong enough to block s
® Since F; AT ): Fz‘/+1’ then s is unreachable in k steps or less
" Since F; = F;,1,thenwecanadd stoall Fj,5 <k
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® We know that [ = F, |~ s because I = P (base case)
= Since F; = F;.1, then we know that —s holds up to k



Correctness (sketch) =K

m Consider the formula Fj,_; AT A s’ where s is a bad cube
= |f UNSAT, then F}_1 is strong enough to block s
® Since F; AT ): Fz‘/+1’ then s is unreachable in k steps or less
" Since F; = F;,1,thenwecanadd stoall Fj,5 <k

® Consider now the relative induction check Fp,_; A—s AT A s

® We know that [ = F, |~ s because I = P (base case)
= Since F; = F;.1, then we know that —s holds up to k

® Propagation: for each ¢ € F;, check F; AT A =c
= we know that c holds up to i, if UNSAT then it holds up to i+1
= since F; = Fiy1, F; AT = F/,, and F; = P,
if ; = Fj1 then the fixpoint is an inductive invariant



. . =<
Inductive Clause Generalization .

® Crucial step of IC3
= Given a relatively inductive clause ¢ <= {I,...,l,}

compute a generalization g C c that is still inductive
FiiNTAgEYJ (1)

® Drop literals from ¢ and check that (1) still holds

= Accelerate with unsat cores returned by the SAT solver
® Using SAT under assumptions

B However, make sure the base case still holds
= If I B~ c\{l;},then [; cannot be dropped



Simple iterative generalization

;:(

void indgen(c, 1i):
done = False
for iter = 1 to max_iters:
if done:
break
done = True
for each 1 in c:
cand = ¢ \ {1}
if not is_sat(I & cand) and
not is_sat(trace[i] & ~cand & T & cand'):
c = get_unsat_core(cand)
rest = cand \ c
while is_sat(I & c):
11 = rest.pop()
c.add(11)
done = False
break




CTI computation

® When F; A —s AT A s is satisfiable: I ?
K3
® s reaches — P in k-i steps ¢

® 5 can be reached from F; in 1 step
® strengthen F; by blocking cubes c in the preimage of s

® Extract CTl ¢ from the SAT assignment
® And generalize to represent multiple bad predecessors

® Use unsat cores, exploiting a functional encoding of the transition
relation

® |f T is functional, then ¢ A inputs AT |= ¢’
® check inputs A T A —s’ under assumptions ¢



SAT-based CTI generalization

=

void generalize_cti(cti, inputs, next):
for 1 = 1 to max_iters:
b = is_sat(cti & inputs & T & ~next')
assert not b # assume T to be functional
c = get_unsat_core(cti)
if should_stop(c, cti):
break
cti = c




Access this presentation and a bibliography at:

landonjtaylor.net/pdr
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