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1. Questions for Stochastic Model Checking [1]

(a) About Sections 3 and 4
(i) Purpose of infinite path and cylinder set

Infinite Path. Defining infinite paths allows the examination of a Markov chain for an infinite
number of steps or an infinite amount of time. Because paths are not required to be bounded by
number of steps in a model, an effective analysis requires infinite paths to be accounted for.

Cylinder Set. The cylinder set allows the exploration of all infinite-length paths with a finite prefix.
More importantly, it allows properties of the semi-ring topology to apply to models.

Comparison. In a DTMC, an infinite path and cylinder set are used to apply Theorem 1 to DTMCs.
That enables the discovery of the probability measure of each path. In a CTMC, this is supple-
mented by an amount of time spent in a state. This means that rather than having a prefix sharing
only states, there is a shared prefix by length of time.

(ii) Syntax comparison

The syntax of CSL is very similar to PCTL. The major differences are as follows:

e CSL has a steady-state operator, which is a major difference. Adding an equivalent steady-
state operator to PCTL for DTMC analysis would potentially duplicate the unbounded until
operator, as it is possible to specify behavior in the long-run with the condition “property
holds until "false””

e CSL is based on time intervals, while PCTL is based on number of steps. They share very
similar operations; however, in CSL a property might read “the probability of failure after
10 seconds is under 0.5”, where in PCTL it would read “the probability of failure after 10
steps is under 0.5”. Specifically, PCTL has a step-bounded until operation, where CSL has a
time-bounded until.

(iii) Modified example

It is possible to modify the example in such a way that the probability of “eventually tails” is at least
one, or tails will always eventually hold. A major modification is to remove all states except “tails”,
make “tails” the initial state, then add a self-loop with a probability of 1. Because I imagine this is
not the intent of the question, other variations are shown on the scanned page labeled 1(a) (iii).
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(iv) Reason for computing BSCC

For steady-state analysis, we are effectively searching for “sinks” in the model. Using the metaphor
of probability flowing through the state space like water, we are looking for the places where pud-
dles will form. A BSCC represents a portion of the state graph that, once entered, cannot be exited.
In the metaphor, the water gets stuck in the BSCC (puddle), and it cannot flow to any other areas.
At that point, we only care about where within the BSCC the probability mass settles. In other
words, if the model enters a state or region that it is likely to leave in a short amount of time, it
does not make sense to account for that behavior in the long run. In contrast, if a model is likely to
be stuck in a state, that is impactful to the long run analysis.

(v) Rewards

A reward is extremely versitile, but it effectively allows the model to accrue “points” for being in
certain states or taking certain transitions. In a DTMC, rewards are given based on (1) number of
time-steps spent in a state, and (2) which transitions are taken. In a CTMC, it is similar, based on
(1) amount of time spent in a state, and (2) which transitions are taken.

In practice, it can be particularly helpful in determining “side effects” of actions. For example, a
network analysis may check that the probability of failure is low, which can be done with normal
CSL or PCTL checking. The user might add rewards to certain transitions to model packets being
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transmitted, which allows not only the probability check, but the answer to “how many packets
can we expect to fire before the network fails?”

(b) About PRISM modeling language
(i) Multiple guarded commands

In Prism, the guard does not synchronize commands or require sequential execution. Synchroniza-
tion is achieved with an action label (see Prism Manual, but sequential operation is determined by
the model’s specification rather than Prism’s semantics.

In short, Prism does not execute commands sequentially. If two guards are simultaneously enabled
in a DTMC, it is a probabilistic choice, and in a CTMC, it is a race condition.

(ii) Always block

Blocking assignments can be achieved in Prism, but to my knowledge, it requires a bit of extra
information in the model (rather than in Prism’s syntax). A step counter, if the model is relatively
simple, suffices. Essentially, if a Verilog program can be implemented as a probabilistic model,
the Prism language can model it. A simple example follows, with every action being completely
deterministic (probability 1) in the (rather uninteresting) Prism DTMC.

Verilog Syntax (approximate):

always @(*) begin
a = 3;
b = 4;

end

Prism Syntax (approximate):
step : [0..1] init O;

[] step = 0 -> 1.0 : a’
[] step =1 -> 1.0 : b’

step’
step’

I
+ +
= =
o o
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O -
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(iii) Synchronize commands in Verilog

Itis possible to achieve similar behavior in Verilog, potentially using an Always block. For example,
many commands in Verilog are commonly synchronized using a shared clock variable. A simple
example follows:

module ml

always @(clk) begin
a <= 3;

end

endmodule


https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Synchronisation
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module m2

always @(clk) begin
b <= 3;

end

endmodule

In the example, clk is used to synchronize the setting of a and b, allowing for small differences in
the amount of time a physical hardware implementation would take to achieve each task. For the
sake of the abstract Verilog model, a and b are set at the same time.

2. Questions for Model-checking Algorithms for CTMCs [2]]

(a) Modified Proposition 1

It appears that the transition delay does not need to be 1, and it can be capped at an arbitrary k. This
is because the proof relies on the fact that multiplying probabilities always yields a probability, or
R € [0,1]. It is important to the proof, however, that the sum of all t values converges, so k would
need to allow for convergence.

(b) Formula equivalence

Yes, according to the semantics description in Section 3.1, the CTL and CSL formulas are equivalent.
One indicates that in every path in M, ¢ holds, and the other indicates that in every state in M, ¢
holds.

(¢) Next/until equivalence

No, the statements are not equivalent. The time-bounded next state query checks that ® holds in
the next state within 1 time unit. The time-bounded until query checks that ® holds within 1 time
unit, but it does not care if that happens in the next state. For example, the former allows only
one transition to s |= ®, where the latter allows an arbitrary number of transitions (with delays
summing to less than one time unit), and only requires @ to hold before the end of the interval
[0,1].

(d) Sufficiency in Theorem 1

Assuming the remainder of the theorem remains unchanged, requiring only s |= ® creates a con-
flict between the second and third case. I assume this conflict would not exist for the remainder of
my response.

The second case, where ® A =Y holds represents the chance of going to a satisfying state within
the time bound. In contrast, the third case requires extra information: if 2 > 0 and ® A ¥ holds,
we are interested in the probability of going to a satisfying state, but we need to add the sum of the
probability to stay in the next (satisfying) state as well. Thus, this case also considers the chance
of exiting a satisfying state before reaching the lower time bound.
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(e) CSL checking pseudocode

At a very high level, this algorithm splits the time-bounded until CSL problem into two (plus a
bonus case for I = [t,o0]) cases. In the case where I = [0,¢], we simply find the sum over all
uniformized time steps of the probability of being in a post-until state at or before time t. In the
case where I = [t, '], we split the problem into two parts: the probability of staying in a pre-until
state until time ¢, and the probability of moving to a post-until state within #’ — ¢ time units.

The following pseudocode (presented primarily in plain language due to differences in notation
between papers) represents an algorithm for checking a CSL time-bounded until property in an
arbitrary CTMC. It is based on a combination of methods presented in [2]] and [1]]. This response
assumes the model and property are already parsed and prepared to analyze.

Input: CTMC M

e Initialize transition rate matrix and state probability vector
e Given interval [, if I = [0, t]:
— Determine the least solution of the set of integral equations on Page 25 of [[1]], which [2]]
proves is equivalent to transient analysis:

Prob(s, dUN ) = ) aME®A (5 67 1)
s"EY

To get this value, perform transient analysis as described below, implementing the for-
mula on the bottom of page 25 of Stochastic Model Checking;:
- For each uniformized time step i, accumulate the sum of the following matrices:
* Find the uniformized matrix such that satisfying states are treated as absorbing
* Multiply that matrix by itself i times, where i represents the number of time-steps
in the uniformized CTMC
* Multiply the result by both the ith Poisson probability, or the probability that i steps
occur within time ¢, and ¥, or the vector with a 1 representing an absorbing state
and 0 representing all other states.
e Giveninterval [,if I = [t,t']:
- Two values need to be obtained: the probability of staying in a ® state until time ¢, then
the probability of reaching a ¥ state without first leaving a ® state with in time ' — ¢.
- To get the former, perform transient analysis as described above. To get the latter, treat
—® as an absorbing state and perform transient analsysis as described above. Sepcifi-
cally:
- For each uniformized time step i, accumulate the sum of the following matrices into M:
* Find the uniformized matrix such that satisfying states are treated as absorbing
* Multiply that matrix by itself i times, where i represents the number of time-steps
in the uniformized CTMC
* Multiply the result by the ith Poisson probability, or the probability that i steps occur
within time ¢’ — t, then multiply that result by ¥, or the vector with a 1 representing
an absorbing state and 0 representing all other states.
— For each time step i:
* Find the uniformized matrix such that states satisfying —® are treated as absorbing
* Multiply that matrix by itself i times, where i represents the number of time-steps
in the uniformized CTMC
* Multiply the result by the ith Poisson probability, or the probability that i steps occur
within time #, then multiply that result by M, which we calculated earlier.
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e Given interval I, if I = [t, o0]:
- Compute as if I = [t,#'], removing bounds on the Until operator.

3. Questions for PrIC3 [3]]

(a) Intuitive description of PDR/IC3

Property-Directed Reachability (PDR or IC3) is an extremely powerful tool that enables checking
properties of systems with very many states over an unknown number of steps. Intuitively, PDR
explores regions of states that can be reached from an initial state, one step at a time. To check if a
bad state is reachable, it keeps exploring until it cannot explore any more regions of the state space,
or until it finds an example of failure.

Where many model checking and verification tools use a state-based approach to analyzing a
model, this becomes impractical when models have a very large set of states. PDR’s major rev-
elation is the fact that it groups states into regions (i.e., rather than representing infinitely many
states, it represents the set of states where x > k).

Anillustrated example is provided on the scanned paper labeled 3(a) (i). This very simple example
shows PDR creating an initial frame with the bad states blocked, then iteratively adding new frames
and attempting to block the bad state. If after F3, the bad state cannot be blocked, the user will get
a counterexample path, or a path from I to a bad state. If the next frame is constructed and matches
F3 exactly, then it is an inductive proof of correctness: since we cannot take a single step to leave
the good states in F3 to F4, then we cannot take any single step from any good state to any bad
state.
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(b) Paper review & challenges

Summary. The paper’s primary contribution is the extension of PDR into the probabilistic domain.
This involves overcoming four major challenges, described below. The paper presents three nested
algorithms: the main PrIC3 loop, the Strengthening procedure, and the overall counterexample-
generation and oracle refinement loop. The paper is successful at meeting several of the challenges,
and room is left for significant future development, especially of the heuristic guiding the strength-
ening procedure.

Technical Contributions. The primary contribution of PrIC3 is the adaptation from PDR (which is
built for deterministic systems) into the probabilistic domain. This comes with several challenges,
which the paper addresses throughout. Discussion of these challenges follows. PrIC3 appears to
be a powerful algorithm for models that are well-suited for it. The paper mentions particularly
promising results for models that are relatively simple but have prohibitively large state spaces, as
PrIC3 appears to outperform model checking tools on this task.
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Challenges. The following is an analysis of how the paper addressed its four presented challenges.

o Challenge 1, Leaving the Boolean Domain. Moving from PDR’s qualitative (Boolean) analysis
into the quantitative (probabilistic) space is the major challenge this paper addresses. Frames
in traditional PDR are (potentially bounded) sets of states. In PrIC3, a property is written
as “the maximal probability of reaching a bad state is at most A”, as opposed to a property
in PDR, which is written “a bad state is not reachable”. Recovery statements throughout the
paper demonstrate equivalence to PDR in the case when the maximum allowed probability
A is zero. Because of this shift to probabilistic analysis, models effectively become infinitely
large due to the addition of real-valued probabilities. Thus, frames are treated as real-valued
functions that evaluate a k-step reachability probability for a given state. The paper’s contri-
bution is strongest for this challenge, but this task creates additional challenges (2-4).

o Challenge 2, Counterexamples # single paths. In traditional PDR, a counterexample is simply a
path demonstrating reachability from the initial state to a target/bad state. In a probabilis-
tic setting, a single path tends to be an insufficient counterexample to show the negation of
the kind of properties PrIC3 is interested in. Thus, PrIC3 returns a sub-MDP containing the
portion of the model that caused the calculated probability to exceed the bound A. The au-
thors address this challenge throughout the paper, emphasizing both the benefits and short-
comings of the presented counterexample generation strategy. While the counterexample
sub-MDP is usually smaller and thus easier to pass to a probabilistic model checker for ver-
ification, it is not always guaranteed to be a true counterexample. That is, PrIC3 sometimes
returns a sub-MDP that is not demonstrative of the reachability probability exceeding A.

o Challenge 3, Strengthening. While traditional PDR strengthens frames by pruning regions
of states from them, PrIC3 strengthens frames by decreasing the maximal probability of
states within frames. This step is the reason a good heuristic is so important; it is desir-
able to decrease probabilities to be as close to their true values as possible. However, in
order to effectively do that, a full model analysis would be required and PrIC3 would be-
come moot. The paper leaves much of this challege to the reader, though the artifact at
https://github.com/moves-rwth/pric3, specifically in the folder athttps://github. com/
moves-rwth/PrIC3/blob/master/pric3/oracles includes some examples of useful oracles
(which are used to generate the heuristics). The authors address this challenge thoroughly,
but it is clear that because of the nature of heuristics, this will likely remain a design challenge
for PrIC3 development.

o Challenge 4, Generalization. PDR’s scalability is greatly impacted by its ability to generalize
states. While this is not necessary for correctness, it is a major scalability challenge. PrIC3
has to not only generalize a reachable set of states, but it has to generalize probabilities for those
states. This presents a scalability challenge due to the complexity of calculating probabili-
ties, and the authors rely primarily on interpolation to attack it. While several methods of
interpolation are presented, the paper appears to lack conclusive evidence for any particular
method.

Shortcomings in Presented Techniques. The paper is clear and explicit about the shortcomings
of the algorithms. The primary weakness seems to be consistent throughout the paper; without an
adequate heuristic for invariant strengthening, the tool can sometimes fall flat. A related shortcom-
ing is the treatment of counterexamples. Specifically, a counterexample returned by PrIC3 may not
truly be a counterexample (or, a good model can produce a false positive for failure). The paper
addresses this weakness by implementing a series of oracle refinements during verification, but
this seems to trade runtime for accuracy and correctness. The presented algorithms, while they
make a significant advance in PDR by moving it into the probabilistic domain, still requires an


https://github.com/moves-rwth/pric3
https://github.com/moves-rwth/PrIC3/blob/master/pric3/oracles
https://github.com/moves-rwth/PrIC3/blob/master/pric3/oracles

Landon Taylor Comprehensive Exam Responses A02236752

additional probabilistic model checking tool to check counterexamples.

(c) Feasibility & limitations for CTMCs

As Katoen commented shortly after the release of PrIC3, adapting PrIC3 to the continuous-time
domain poses formidable challenges. Even limiting the discussion to vector addition systems,
continuous-time systems require explicit state space enumeration for complete analysis, soa CTMC
adaptation of PDR would likely only be able to estimate probabilities.

One potential direction for exploration is discovering probability bounds on regions of a state space
using the embedded DTMC (potentially leveraging desirable properties from strongly-connected
components and other model features), then refining the analysis for only regions that seem to
increase the observed probability of reaching a target. Frames’ time steps could potentially be
represented by a single uniformized time step in the CTMC.

Separating the probabilistic and the deterministic sides of models has shown promise: in Ragtimer
and Wayfarer, for example, paths to a target are collected in a probability-agnostic setting, then
probabilistic model checking is used to find a probability lower bound. PDR is potentially useful
for discovering these paths, but more efficient methods for VAS path discovery seem to already
exist.

4. Questions for Parameter Synthesis [4]

(a) Terminology

Feasibility Problem is simply the question “is there any parameter instantiation satisfying some
property ¢?” It is the fundamental question for parameter synthesis.

Exact Partitioning Problem attempts to break a region into two complimentary sub-regions, one
that contains only members satisfying some ¢, one satisfying —¢.

Approximate Partitioning Problem has the same goal as the exact partitioning problem, except it
allows for a margin of error. This allowance is added primarily for efficiency. In the case that no
error is allowed, this is equivalent to the exact partitioning problem.

Parameter Synthesis, broadly speaking, is the art of finding parameters or specifications for a
model that allow the model to satisfy a property. In traditional verification, we simply ask whether
or not a model is safe. Parameter synthesis allows us to ask “What do I have to do to the model to
make it safe?”

CEGAR is an abstraction-refinement approach that creates an abstract model, then iteratively uses
counterexamples to refine the abstraction (i.e., make it as close as possible to the original model).
An ideal CEGAR algorithm produces an abstraction that saves on computation and memory but
accurately reflects all of the original model’s properties of interest.

(b) Section 5 summary & review

Summary. Section 5 provides algorithms for parameter synthesis problems. It describes exact par-
titioning, region verification, and approximate partitioning, as well as feasibility checking methods,
describing each in detail.

10
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Exact partitioning is essentially the process of exactly solving a linear system of equations whose
coefficients are rational functions. This poses a significant challenge when systems become very
large, as the computation is exponential in the number of parameters. Cutting-edge tools use state
elimination on the Markov model before doing this calculation to save computational effort. Ex-
periments show this method offers perfect representation of the model in exchange for significant
runtime.

Region verification partitions a model into regions then exploits SMT solving to check if the param-
eters produce a satisfiable formula. This is exact and complete, but it does not scale. By relaxing
parameter dependencies and considering only worst cases, this method becomes more viable. Re-
gion abstraction further benefits from refinement.

Approximate Parameter Space Partitioning is very similar to exact partitioning, but it allows for
unknown regions. As shown in Figure 10, the method is similar to CEGAR in that it creates re-
gions as an abstraction, then iteratively refines the result space. The challenges arising here include
implementing effective refinement strategies, and this becomes similar to a heuristic problem. This
appears to be the most scalable method presented.

Feasibility Checking benefits from mathematical optimization, as it is an ETR-complete problem.
Essentially, feasibility is treated as an optimization problem, enabling the ETR-formula to be rep-
resented as a problem with a quadratic objective, which can then be turned into LP problems. Fur-
ther, integrating PMC techniques into the approach once the initial point is feasible allows more
efficiency.

Review. The following lists advantages and shortcomings of each section:

Exact partitioning has the following advantages:

e Medium-sized functions can be computed relatively efficiently
e The method is exact, so an exact solution is known
e State elimination is effective and gives a good efficiency boost

Exact partitioning has the following shortcomings:

e Solution functions can be too large
e Optimally ordering elimination is NP-hard, requiring heuristics and advanced knowledge
e Models often need to be decomposed to make checking possible

Region verification has the following advantages:

e SMT solving is relatively easy to implement
e Some models can benefit from a transformation into an MDP
e The result is exact and complete, unlike some other methods

Region verification has the following major shortcoming:
e The method is very expensive and only works on very small models
Approximate Parameter Space Partitioning has the following advantages:

e The algorithms are more scalable for very large models because of abstraction
e The result is probably “good enough” for many models

Approximate Parameter Space Partitioning has the following shortcomings:

e The algorithms are more complicated to implement and can introduce errors more easily
e Finding region candidates requires sampling and is not exact

11
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(c) Adaptation to CTMCs

A parametric MC for CTMCs is relatively straightforward to translate, but algorithms would be
significantly more complex, as is usually the case with CTMCs. The following definition is my
adaptation:

Definition. A CTpMC C is a tuple (S, s1, X, R), with a finite set S of states, an initial state s, a finite
set X of real-valued variables (parameters), and a transition rate function R : S x S — R[X]. The
parametric transition rate is given by R(s, t).

(d) Usefulness of parametric CTMC

I believe a CTpMC has potential to be useful. There are many cases where the desired outcome
(property) is known, but the challenge lies in designing the system to satisfy that property. For
example, if a synthetic biologist desires to produce a certain amount of a product within a certain
timeframe, the model could be encoded as a CTpMC in which the parameters are impacted by
changes made to the rate of each reaction. In a simpler example, if a manufacturing company
is trying to determine how many employees to hire, they may use parameters to manipulate the
number of units each employee produces per day based on factors like experience, fatigue, and
other job responsibilities.

(e) PrIC3 and parameter synthesis

The techniques in PrIC3 have the potential to help with parameter synthesis in two primary ways:
(1) as an alternative to PMC or SMT solving, and (2) to iteratively generate and refine bounds on
variables using the existing PrIC3 heuristics.

As an alternative to PMC, PrIC3 may (for models that are well-suited for it) be a faster way to
check that a change to a parameter satisfies the property. As a tightly-integrated method, it may be
possible for PrIC3 to quickly find and refine k-step bounds on probabilities to help guide parameter
synthesis.

Additionally, PrIC3 and even traditional PDR may be particularly helpful for generating abstracted
regions. Since one of PDR’s strong suits is finding reachable regions, extended with probabilities
in PrIC3, it may be able to boost the heuristics implemented in existing parameter synthesis tools.

12
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